skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hoover, Joe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Humans use language toward hateful ends, inciting violence and genocide, intimidating and denigrating others based on their identity. Despite efforts to better address the language of hate in the public sphere, the psychological processes involved in hateful language remain unclear. In this work, we hypothesize that morality and hate are concomitant in language. In a series of studies, we find evidence in support of this hypothesis using language from a diverse array of contexts, including the use of hateful language in propaganda to inspire genocide (Study 1), hateful slurs as they occur in large text corpora across a multitude of languages (Study 2), and hate speech on social-media platforms (Study 3). In post hoc analyses focusing on particular moral concerns, we found that the type of moral content invoked through hate speech varied by context, with Purity language prominent in hateful propaganda and online hate speech and Loyalty language invoked in hateful slurs across languages. Our findings provide a new psychological lens for understanding hateful language and points to further research into the intersection of morality and hate, with practical implications for mitigating hateful rhetoric online. 
    more » « less
  2. null (Ed.)
  3. Abstract Understanding motivations underlying acts of hatred are essential for developing strategies to prevent such extreme behavioral expressions of prejudice (EBEPs) against marginalized groups. In this work, we investigate the motivations underlying EBEPs as a function of moral values. Specifically, we propose EBEPs may often be best understood as morally motivated behaviors grounded in people’s moral values and perceptions of moral violations. As evidence, we report five studies that integrate spatial modeling and experimental methods to investigate the relationship between moral values and EBEPs. Our results, from these U.S. based studies, suggest that moral values oriented around group preservation are predictive of the county-level prevalence of hate groups and associated with the belief that extreme behavioral expressions of prejudice against marginalized groups are justified. Additional analyses suggest that the association between group-based moral values and EBEPs against outgroups can be partly explained by the belief that these groups have done something morally wrong. 
    more » « less
  4. Research has shown that accounting for moral sentiment in natural language can yield insight into a variety of on- and off-line phenomena such as message diffusion, protest dynamics, and social distancing. However, measuring moral sentiment in natural language is challenging, and the difficulty of this task is exacerbated by the limited availability of annotated data. To address this issue, we introduce the Moral Foundations Twitter Corpus, a collection of 35,108 tweets that have been curated from seven distinct domains of discourse and hand annotated by at least three trained annotators for 10 categories of moral sentiment. To facilitate investigations of annotator response dynamics, we also provide psychological and demographic metadata for each annotator. Finally, we report moral sentiment classification baselines for this corpus using a range of popular methodologies. 
    more » « less